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Abstract. 

The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable 
aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator 
feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained 
through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and 
control input commands and rates. The neurocontroller exhibits good robustness through stability margins 
in phase ana vehicle output gains. By maintaining performance and stability in the presence of sensor failures 
in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight 
control design. 

I. Introduction. There is a synergistic interest by both the Control and the Neural Ketwork com- 
munities in designing neural network architectures to solve difficult control problems [l-51. However, in most 
of the applications reported in the literature. evaluations of such neurocontrollers have either been limited 
to  the nominal plant model used for the control design, or have pointed to poor robustness properties of the 
neurocontrol design. The term "robustness" is defined here as maintaining performance and stability in the 
presence of uncertainties associated with the modelling process. 

Since a plant model is only a simplified version of the plant dynamics, an important criterion for the 
practical design of neurocontrollers is that  of robustness. The standard feedforward neural network architec- 
ture with piant measurement feedback was investigated in Ref.[5]. The results reported there indicated that 
this structure does not meet the robustness requirements for flight control systems. Therefore, an important 
issue in the applicability of neural networks as controllers is that of devising neural architectures with good 
control robustness properties. The objective of this paper is to address that issue in the context of aerospace 
vehicle control with special emphasis on piloted flight. Towards that objective, results are presented and 
discussed for the design/evaluation of a robwt neurocontroller to provide independent control of pitch rate 
and airspeed responses to pilot command inputs for an integrated airframe/propulsion longitudinal dynamics 
model of a modern fighter aircraft. 

The paper is organized as follows. The vehicle model and the desired closed-loop dynamics are introduced 
in Section 11, and are followed in Section I11 by the training architecture and the design of the neurocontroller. 
The nominal performance and the robustness of the dynamic neurocontroller are evaluated and discussed in 
section IV. 

11. Vehicle Model. The vehicle model consists of an integrated state-space representation for a 
modern fighter aircraft powered by a two-spool turbofan engine and equipped with a two-dimensional thrust- 
vectoring a d  reversing nozzle. The flight condition used in this application is representative of the STOL 
(Short Take-off and Landing) approach-to-landing task, with an airspeed of Vo = 120 Knots. a flight path 
angle of -yo = -3 deg, and a pitch attitude of 8, = 7 deg. The linearized dynamics of the vehicle model are 
of the form 

E=AZ+BG. , ,  E=CZ; (1) 
where the state vector is 

5 = [u, W ,  Q, 8, h, N2, N25, P6, T41B]', 
u being the aircraft body ax is  forward velocity (ft/sec), w the aircraft body a x i s  vertical velocity (ft/sec), 
Q the aircraft pitch rate (rads/sec), 8 the pitch angle (rads), h the altitude (ft), N2 the engine fan speed 
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I & = AmEm + BmfSEL, 5, = (5) 

with Z S E L  = [ V , E L , Q S E L ] ~  where VSEL is the pilot velocity command in ft/s, and QSEL is the pilot 
longitudinal stick deflection in inches; and Et = [Vc, QcIT, where the subscript “c” refers to the ideal response 
in V and Q with units of ft/s and deg/s respectively. The system matrices Am, Bm and Cm are the state- 
space representation of the ideal response transfer functions listed in Ref.[6]. 

Actuator models were also used in the control design and evaluation. The fuel flow actuator was modelled 
as 

I G W F ( S )  = lO/(s + 10) . So/(. + 50); ( 6 )  

with a maximum fuel flow rate IWFIma, = lO,0001brn/hr, and a rate limit IliliF(mac = 2Ol0001bm/hr/s. 
Note that the fuel flow here corresponds to the perturbation from the trim value for the linear model. In 
this study, the value IWFL,,, is therefore chosen such that the total fuel flow limit will not be exceeded 
when a perturbation of a magnitude of IWFI,,, is commanded. The thrust vectoring actuator is modelled 
as 

G ~ T v ( s )  = 15/(s + 15); (7) 

with a maximum thrust vector angle )6TVIma, = lOdeg, and a rate limit IbTVI,, = 20deg/s .  As a result, 
nonlineanties appear in the control design and evaluation in the form of actuator position and rate limits. 

111. Design of a Dynamic Neurocontroller. The possibility of designing a neurocontroller 
that provides a satisfactory trade-off between tracking performance, control effort, and control rates, was 
demonstrated in Ref.[5]. The neurocontroller designed in $1 was a feedforward neural network having as 
inputs the vehicle outputs, the tracking errors, the error mtes, and the error integrals. This neurocontroller 
will be referred to in this work as a static neurocontroller. It achieved a nominal performance comparable to 
that of a baseline H,-based controller designed for the same command tracking problem. However, the H,- 
based controller was significantly more robust than the static neurocontroller in the presence of time-delay 
and error loop failures. 

A comparison of the two controllers as in Ref.[5] showed that the H,-based controller had dynamics that 
are different from the PID (Proportional+lntegral+Derivative) structure built in the static neurocontroller. 
The A, -based control synthesis automatically generates the controller dynamics that are necessary to achieve 
the desired performance and robustness. In order to enhance the neurocontrol robustness, it is therefore 
proposed to investigate procedures by which such automatic synthesis of the desired controller dynamics can 
be achieved by a neurocontrol design. 

For most modern multivariable control design technique, the controller has an internal structure which 
consists of a state feedback regulator together with a state estimator. It was decided to investigate a similar 
structure for synthesizing a dynamic controller with good robustness properties. The training architecture 
for such a neurocontrol synthesis is presented in Fig.1, where a multilayer feedforward net is trained to 
track the commanded trajectories given the vehicle outputs, the t m c b n g  errors, and the state vector of the 
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vehicle model. (It is noted that providing the vehicle outputs and tracking errors to the neural network 
allows reconstruction of the commanded state). For each pilot selected trajectory E s E L ( t ) ,  a commanded 
trajectory Z c ( t )  is generated from (5). Prior t o  training, the dynamics of the pilot command filter, the 
actuators, and the vehicle model are discretised. The commanded trajectory Z C ( t k )  and the vehicle state 
vector 5( t , )  are scaled into Z i ( t k )  and 5 ‘ ( t k )  with scale factors that are representative of the vehicle dynamics 
over the range of pilot input commands. As ahown iii Fig.?, the cmtro! input t.o t.he actuators, i i z ( t k ) >  and 
the control input to the plant, i i : ( tk ) ,  are normalized by their maximum value (IWFI,,, l6TV(,,,). Due to 
the time-discretization of the system dynamics, a commanded neurocontrol input generated at time t k  will 
only affect the vehicle output at time t k + z .  During training, the weights increments at time t k  are therefore 
calculated from S,(tr)  = Z:(tr+z) - E’(&) .  This procedure ensures that, during training, the proper action 
will be commanded by the neurocontroller at time t k  to  achieve the desired tracking at time t k + z .  

In order to maximize the tracking performance while minimizing the costs associated with high control 
effort and high control rate requirements, the feedforward net of Fig.1 is trained to minimize an objective 
function that is a weighted sum of tracking errors, and control input commands and rates [4,5]. The learning 
rate of backpropagation and the weights of the objective function (not to be confused with the weights of 
the neural network) are the “knobs” used by the control designer to “tune” the neurocontroller such that the 
design objectives are met. The commanded trajectories used for training were pitch rate doublets centered 
between 2.5s and 5s with a maximum absolute intensity of 0.5in, and velocity step functions with a maximum 
absolute intensity of 20 ft/sec [5]. These types of commanded trajectories represent the frequency content 
of typical pilot command inputs. Towards the end of the training, the weights updates were calculated from 
the pitch-rate/velocity responses to such commands in the presence of an added time delay of 50ms in both 
control channels (location ,6 in Fig.2) in order to improve the phase stability margin of the neurocontroller. 
The network configuration in the training architecture of Fig.1 has two hidden layers of 10 neurons, and the 
activation function of each neuron is given by the standard input/output response y = tanh(x). 

Once trained, the two hidden-layer feedforward net is used in conjunction with a state estimator of 
the vehicle to command the control input to the actuator. In the closed-loop evaluation architecture of 
Fig.2, the state vector of the vehicle is estimated from a neural simulation of the dynamics of the nominal 
vehicle/actuators models. Given the vehicle output E ( t k ) ,  the tracking error Ez ( t k )  = f,(tk) - r ( t k ) ,  and an 
estimate $ ( t k )  of the vehicle state vector, the feedforward net trained in Fig.1 is used to  generate a control 
input iic(tt) as shown in Fig.2. The state estimate % ( t k )  and the control input i i , ( t k )  are then passed to the 
neural estimator which estimates the next value of the vehicle state vector at time t k .  In Fig.2, the A/D 
and D/A converters are implemented through zero-order hold devices. 
IV. Evaluation of the Dynamic Neurocontroller. The neurocontroller was evaluated 

in closed-loop on step pitch rate input commands, different from the doublets used in training. The input 
commands chosen to illustrate the neurocontrol performance were defined by the step pitch rate command 
Q s E L ( ~ )  = 0.5in for t 5 Jsec, Q ~ E L ( ~ )  = 0 for t > Jsec; applied simultaneously with the following step 
velocity command: vsEL(t > 0) = 20ft/sec. This type of input command was chosen to illustrate the 
system performance because it is quite demanding in that the pilot is commanding the aircraft t o  pitch up 
as well as accelerate to a higher velocity. 

Nominal Performance. As shown in Fig.3, the deviation from the ideal response is small for both pitch 
rate and velocity commands, while the control requirements W F  and 6TV are smooth. Also shown in Figs.3~ 
& 3e are the corresponding control and control rate requirements with the static neurocontroller of Ref.[5]. 
The nominal command tracking performance with the static neurocontroller was similar to that for the 
dynamic neurocontroller designed in this study, so the corresponding pitch-rate and velocity responses are not 
shown in Fig.3. Fig& indicates that the pitch rate command 6TV generated by the dynamic neurocontroller 
(~?‘VNN dynamac) is much smaller than the one generated by the static neurocontroller ( ~ T V N N  ,tabc). 

Fig.3e shows that the control rate ~ T V N N  dynamrc generated by the dynamic neurocontroller no longer 
rides the actuator rate limit, as it was the case for the static neurocontroller ( ~ T V N N  ,totac). For other 
classes of step velocity commands, e.g. V S E L ( ~ )  = -20ft/sec, the fuel flow requirement W F  of the dynamic 
neurocontroller is also reduced, no longer showing the oscillatory behavior as it had in the static neurocontrol 
design [5].  As will be demonstrated in the next subsections, the improved tracking-performance/control-effort 
tradeoff of the dynamic neurocontroller over the static neurocontroller [5.8] enhances the robustness of the 
control in the presence of modelling uncertainties. Modelling uncertainties are due to neglected high order 
dynamics, parameter changes due to  changes in flight conditions, and the margin of error associated with 
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estimating model parameters based on analytical tools and experimental data. A classic specification for 
robustness, also used in the military specifications for design of flight control systems [7], is that of stability 
margins, specifically gain and phase margins [9]. 

Phase Margin. To estimate the phase robustness of the dynamic neurocontroller, the effect of the 
various time-delays encountered by the signals throughout the closed-loop system was modelled by introduc- 
ing a delay ~d between the actuators and the vehicle (location p in the closed-loop evaluation architecture 
of Fig.2). The neurocontroller performance in tracking pitch rate and velocity commands is illustrated in 
Fig.4 for an added delay of Td = 501x1s in the two control channels (WF and 6TV). This value of T d  is 
quite representative of the kinds of time delays to be expected in practical implementation of complex flight 
control designs. Fig.4 also shows very little degradation of the tracking performance of the neurocontroller 
in the presence of such a time-delay, and it is to be noted here that the static neurocontroller of Ref.[5] 
resulted in a highly oscillatory pitch rate response with this value of T d .  

Gain Margin. To analyze the robustness of the neurocontroller to uncertainties of the type that can be 
modelled as gain changes at the plant output, closed-loop simulations were tried with various gain factors of 
the vehicle output measurements (location 7 in the closed-loop evaluation architecture of Fig.2). Closed-loop 
responses are illustrated in Fig.5 with a gain factor of 2 in both pitch rate and velocity measurements. I t  is 
noted that the gain margin of the handling qualities specifications [7] is between gain factors of 0.5 and 2 in 
each control channel. The performance of the neurocontroller in tracking pitch rate and velocity commands 
is very satisfactory in both cases of commands. Fig.6 shows the pitch rate and velocity responses with a 
gain factor of 0.55 in pitch rate measurement, and a gain of 0.6 in velocity measurement. It is noted that, 
in closed-loop evaluation, the state vector of the vehicle is estimated by the neural estimator of the nominal 
vehicle model. It would therefore be interesting to test the possibility of increasing the gain margin of the 
neurocontroller within the handling qualities specifications by simulating vehicle modelling uncertainties in 
the neural estimator. As indicated in Fig.6, the neurocontroller is still able to stabilize the vehicle, yet with 
an expected loss of tracking performance, since the chosen pitch-rate/velocity command is quite demanding 
in terms of control effort and control rate requirements. 

Error Loop Sensor Failure. In the classical approach of flight control design, an inner loop compensa- 
tion (f -+ ii) is first designed to provide stability augmentation, and to place the augmented plant dynamics 
within the handling qualities specifications. An outer loop compensation ( e  + E) is subsequently designed 
to provide decoupled command tracking in order to reduce pilot workload. The inner loop compensation 
of this dynamic neurocontroller was evaluated by considering failures in the outer compensation loops, Le. 
failure in the error sensors (location Q in the closed-loop evaluation architecture of Fig.2). The responses of 
the closed-loop system with failure in the eQ loop are shown in Fig.7. The neurocontroller very satisfactorily 
tracks the velocity command and provides stable response in pitch rate, whereas both velocity and pitch-rate 
responses with the static neurocontroller [5] were unstable in the presence of eQ loop failure. The closed-loop 
responses with failure in the e y  loop are shown in Fig.8. The neurocontroller performance in tracking the 
commanded pitch rate is comparable to the tracking performance with the nominul vehicle model, and the 
velocity response is smooth. This indicates that the dynamic neurocontroller uses pitch rate and velocity 
measurements in a manner consistent with the classical idea of providing inner loop plant augmentation. 

v. Conclusion. The synthesis of robust neurocontrollers for flight control was investigated via an 
aircraft control design example. The multivariable control design problem was set up as the task of following 
the trajectories generated from a model of the desired vehicle response dynamics to pilot command inputs. 
The neurocontroller has an internal structure consisting of a state-feedback neuro-regulator operating in 
conjunction with a neural estimator. This neurocontrol structure in conjunction with appropriate training 
allows for automatic generation of the neurocontroller dynamics that achieve the desired performance and 
robustness. 

In contrast to the static neurocontroller [5], this dynamic neurocontroller achieves a satisfactory tracking- 
perforrnance/control-effort tradeoff with good robustness properties in the presence of modelling uncertainties 
and error loop failures. The neurocontroller maintains performance and stability in the presence of time- 
delays and vehicle output gain variations that are to be expected in the practical implementations of complex 
flight control designs. Closed-loop simulations of the system also showed that the neurocontroller could track 
the velocity command when the sensor measuring the tracking error of the pitch rate command would fail, 
and vice-versa. The structure of the neurocontroller, which provides stability augmentation and decoupled 
command tracking, is therefore consistent with the classical approach of flight control design. 
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